загрузка...
Юнному радиолюбителю | Многоэлектродные лампы
Триод усилитель
Для электронной лампы, выполняющей роль усилителя, как и для транзистора, важнейшим условием для работы без искажения сигнала является смещение. Для этого на управляющую сетку (относительно катода) вместе с напряжением усиливаемого сигнала подают некоторое постоянное отрицательное напряжение, которое несколько закрывает лампу. Напряжение смещения предупреждает появление сеточных токов, что может вызвать искажение сигнала, и, влияет на режим работы лампы в целом.
Напряжение смещения для биполярных транзисторов одинаково и равно: для германиевых 0,1 0,2 В, для кремниевых 0,5 0,7 В. Для электронных же ламп оно определяется свойствами каждой конкретной лампы и указывается в паспортах ламп и справочных таблицах. Так, например, для триода 6С5С при постоянном напряжении на аноде 250 В на ее управляющую сетку должно подаваться напряжение смещения, равное минус 8 В.
В принципе смещение на управляющую сетку можно подавать от специальной батареи с соответствующим напряжением, как это иногда делали в батарейных ламповых приемниках. В сетевой же аппаратуре применяют так называемое автоматическое смещение, не требующее специальной батареи.
Схему усилителя с таким способом смещения ты видишь на рис. 221. В усилителе работает триод с катодом косвенного накала. Нить накала лампы питается от обмотки трансформатора, понижающего напряжение сети до 6,3 В. Между минусом источника питания анодной цепи Uи.п функцию которого выполняет выпрямитель, и катодом лампы включен резистор RK Управляющая сетка лампы соединена через резистор RC с нижним выводом катодного резистора RK Через резистор RK течет катодный ток лампы, и на нем происходит падение напряжения, соответствующее току и сопротивлению в этом участке цепи. При этом на верхнем выводе резистора RK, а значит, и на катоде лампы получается положительное напряжение относительно его вывода, соединенного с минусом источника анодного напряжения. А так как сетка соединена не с катодом, а с выводом резистора RK, противоположном катоду, она получает отрицательное напряжение относительно катода.
Резистор, с помощью которого на сетке лампы создают начальное отрицательное напряжение смещения, называют резистором автоматического смещения.
Сопротивление резистора RK, необходимое для получения требуемого напряжения смешения Uc для конкретной лампы можно рассчитать по формуле RK = Uc/IK, где IK катодный ток лампы, равный току анода (или сумме токов цепей многоэлектронной лампы).
Приведу пример расчета. На управляющую сетку триода 6С5С надо подать напряжение смещения Uc = 8В. Анодный ток этой лампы составляет 8 мА. В этом случае сопротивление резистора смещения должно быть: RK = 8/0,008 = 1 кОм.
Заодно давай подсчитаем мощность тока, рассеиваемую на этом резисторе: Р = UI = 8 В • 0,008 А ≈ 0,06 Вт. Значит, этот резистор должен быть рассчитан, на мощность рассеивания не менее 0,1 Вт (МЛТ 0,125). Иначе он может сгореть.
Чтобы измерить напряжение автоматического смещения, вольтметр присоединяют параллельно катодному резистору таким образом, чтобы его зажим, отмеченный знаком + , был подключен к катоду лампы. Если при этом вольтметр показывает 8В, значит, на сетке лампы напряжение минус 8В. Так, между прочим, подают напряжение смещения и на затвор полевого транзистора.
Какова роль конденсатора СК? Он решает ту же задачу, что и аналогичный ему конденсатор, шунтирующий эмиттерный резистор транзисторного усилителя. Когда лампа усиливает переменное напряжение сигнала, во всей ее анодной цепи появляется переменная составляющая усиливаемых колебаний. В результате на катодном резисторе, как и на анодной нагрузке возникает переменное напряжение. И если в цепи катода будет только резистор, то создающееся на нем переменное напряжение вместе с постоянным напряжением смещения будет автоматически подаваться на управляющую сетку лампы. Образуется отрицательная обратная связь, ослабляющая усиление. Конденсатор же, шунтирующий резистор автоматического смещения, свободно пропускает через себя переменную составляющую анодного тока и тем самым устраняет отрицательную обратную связь. В этом случае через катодный резистор идет только постоянная составляющая анодного тока, благодаря чему на управляющей сетке действует только постоянное начальное отрицательное напряжение смещения.
Емкость конденсатора СК должна быть достаточно большой, чтобы он не представлял сколько-нибудь существенного сопротивления токам самых низших частот, усиливаемых лампой. В усилителе 34, например, его емкость должна быть не менее 10 мкФ, а номинальное напряжение не менее напряжения смещения. Это, как правило, электролитический конденсатор.
Работу триода как усилителя можно иллюстрировать графиками, показанными на том же рис. 221. Здесь к участку сетка катод лампы, т.е. в цепь управляющей сетки через конденсатор связи Cсв подается переменное напряжение Uвх , которое надо усилить. Источником этого напряжения может быть детекторный приемник, микрофон, звукосниматель. В анодную цепь лампы включена анодная нагрузка резистор Rа .Пока в цепи сетки нет переменного напряжения (участок 0 а на графиках), в анодной цепи течет не изменяющийся по величине ток Iа, соответствующий нулевому напряжению на сетке. Это среднее значение анодного тока ток покоя. Но вот в цепи сетки начало действовать входное переменное напряжение (на графиках—участки аб). Теперь сетка периодически заряжается то положительно, то отрицательно, а анодный ток начинает колебаться: при положительном напряжении на сетке он возрастает, при отрицательном уменьшается. Чем больше изменяется напряжение на сетке, тем значительнее амплитуда колебаний анодного тока. При этом на выводах анодной нагрузки Rа появляется переменная составляющая напряжения, которая может быть подана в цепь сетки такой же лампы следующего каскада для дополнительного усиления. Если в цепь сетки подавать напряжение звуковой частоты, скажем, от детекторного приемника, а в анодную цепь вместо резистора Rа включить головные телефоны, то усиленное лампой напряжение заставит телефоны звучать во много раз громче, чем при подключении к детекторному приемнику.
Какое усиление может дать лампа? Это зависит от ее конструкции, в частности от густоты и расположения сетки относительно катода. Чем сетка гуще и ближе расположена к катоду, тем сильнее сказывается влияние ее напряжения на электронный поток внутри лампы, тем значительнее колебания анодного тока, тем, следовательно, лампа дает большее усиление. Выпускаемые нашей промышленностью триоды в зависимости от их назначения обладают различными усилительными свойствами. Одни из них могут дать двадцати тридцатикратное усиление, другие позволят усиливать напряжение в несколько сотен и даже тысяч раз.
Пока я рассказывал о триоде, ты, вероятно, невольно сравнивал его с биполярным транзистором. В самом деле, катод лампы напоминает эмиттер, анод коллектор, а управляющая сетка базу транзистора. По своим функциям эти электроды очень схожи, но как ты в этом убедился, физические процессы, происходящие в трехэлектродной лампе и транзисторе, никак нельзя назвать одинаковыми. Да, юный друг, в твердом теле биполярного транзистора работают отрицательные и положительные носители тока, а в вакууме электронной лампы только отрицательные электроны. Иное дело полевой транзистор, в канале которого ток образуется только положительными зарядами (в канале типа р) или только отрицательными зарядами (в канале типа п). Полевой транзистор по своим свойствам близок к электронной лампе. Поэтому по функциональным обязанностям катод лампы можно сравнить с истоком, анод со стоком, а сетку с затвором полевого транзистора.
|