загрузка...

 

загрузка...
Юнному радиолюбителю     |     Усилитель звуковой частоты

Сетевой блок питания

В этой части беседы я расскажу тебе о законченном блоке питания транзисторной аппаратуры от сети переменного тока. Конструируемые приемники или усилители ты можешь изменять, упрощать или усложнять, но для их питания будешь использовать один и тот же блок питания.

Предлагаемый блок питания (рис. 169) представляет собой двухполупериодный выпрямитель со стабилизатором и регулятором выпрямленного напряжения. Напряжение постоянного тока на его выходе можно плавно изменять примерно от 1 до 12 В при токе до 0,5 А. Это значит, что такой блок можно использовать для питания практически любого транзисторного приемника или усилителя 34, измерительных приборов.

Разберемся в устройстве и работе блока. Сетевой трансформатор Т1 обмоткой I подключают к электроосветительной сети напряжением 220 В через плавкий предохранитель Пи выключатель S1. Обмотка II трансформатора и диоды V1 V4, включенные по моего вой схеме, образуют двухполупе риодный выпрямитель. Эта часть блока питания тебе уже знакома по предыдущей части беседы (см. рис. 166).

К выпрямительному мосту подключен электролитический конденсатор С1, частично сглаживающий пульсации выпрямленного напряжения. С него выпрямленное напряжение подается к нагрузке RH через стабилизатор напряжения, выполняющий функцию дополнительного фильтра выпрямителя и одновременно регулятора выходного напряжения блока питания.

Проследи цепь питания нагрузки RH (приемник, усилитель), подключаемый к зажимам XI и Х2 + блока. Ток в этой цепи, а значит, и напряжение на нагрузке зависят от состояния транзистора V7, включенного в эту цепь. Когда этот транзистор открыт и сопротивление его участка эмиттер коллектор мало (несколько ом), все напряжение выпрямителя падает на нагрузке RH. Когда же транзистор закрыт и сопротивление участка эмиттер коллектор становится очень большим, то почти все напряжение выпрямителя падает на этом участке, а на долю нагрузки практически ничего не остается. Состоянием же транзистора V 7 управляет транзистор V 6, который в свою очередь управляется напряжением, подаваемым на его базу с движка переменного резистора R2. Оба транзистора включены по схеме ОК (эмиттерные повторители) и работают как двухкаскадный усилитель тока. Нагрузкой транзистора V6 являются эмиттерный р n переход транзистора V7 и резистор R3, а нагрузкой регулирующего транзистора V7 цепи приемника или усилителя, подключенные к выходу блока.

Управляющую цепь стабилизатора напряжения образуют параметрический стабилизатор, состоящий из резистора R1 и стабилитрона V5, и подключенный к нему переменный резистор R2. Благодаря стабилитрону и конденсатору С2 на переменном резисторе (по отношению к стабилитрону он включен потенциометром, т.е. делителем напряжения) действует постоянное напряжение, равное напряжению стабилизации Uст используемого в блоке стабилитрона. В описываемом блоке это напряжение равно 12 В. Когда движок переменного резистора находится в крайнем нижнем (по схеме) положении, управляющий транзистор V6 закрыт, так как напряжение на его базе (относительно эмиттера) равно нулю. Регулирующий транзистор V7 в это время тоже закрыт. По мере перемещения движка переменного резистора вверх на базу транзистора V6 подается открывающее отрицательное напряжение и в его эмиттерной цепи появляется ток. Одновременно отрицательным напряжением, падающим на эмиттерном резисторе R3 транзистора V6, открывается транзистор V7, и во внешней цепи блока питания появляется ток. Чем больше отрицательное напряжение на базе транзистора V6, тем больше открываются транзисторы, тем больше напряжение на выходе блока питания и ток в его нагрузке.

Наибольшее напряжение на выходе блока почти равно напряжению стабилизации стабилитрона V5 (Д813), а наибольший ток, потребляемый нагрузкой от блока, удвоенному прямому току диодов выпрямителя. В выпрямителе описываемого блока используются диоды серии Д226, максимальный выпрямленный ток которых равен 300 мА (0,3 А). Значит, и наибольший ток, потребляемый от блока питания нагрузкой, может достигать 600 мА. При изменении тока в нагрузке от нескольких миллиампер до 280 300 мА напряжение на ней остается практически неизменным.

Возможная конструкция блока питания показана на рис. 170, а. Штриховыми линиями условно обозначены углы фанерного ящичка корпуса блока. Все детали, кроме переменного резистора R2 с выключателем питания S1, резистора R4 и выходных зажимов, смонтированы гетинаксовой панели, которая винтами укреплена на дне корпуса. Ориентировочные размеры этой панели, схема размещения и соединения деталей на ней показаны на рис. 170,6. На этом чертеже детали изображены так же, как на принципиальной схеме, символически, а соединительные проводники, находящиеся снизу панели штриховыми линиями. Корпус транзистора V6 находится в отверстии (диаметром 10 мм) в плате. Нижняя часть корпуса транзистора V7 также находится в отверстии в плате (диаметром 17 мм), сверху он прижат к плате фланцем. Переменный резистор R2 с выключателем S1 (переменный резистор ТК или ТКД) и выходные зажимы блока укреплены на другой панели, выпиленной из листового гетинакса, стеклотекстолита или иного изоляционного материала толщиной 2 3 мм (в крайнем случае из фанеры), являющейся крышкой ящика. Они соединяются с соответствующими им точками монтажной панели многожильными проводниками в надежной изоляции. Резистор R4 подпаян непосредственно к выходным зажимам.

Резистор R2 на мощность рассеяния менее 0,5 Вт должен быть группы А, т. е. его сопротивление между выводом движка и любым из крайних выводов прямо пропорционально углу поворота оси. Это необходимо для того, чтобы его шкала выходных напряжений была возможно более равномерной. Коэффициент h21Э транзисторов может быть небольшим, например 15 20, важно лишь, чтобы они были исправными. Причем вместо транзистора МП39 можно использовать любые другие маломощные низкочастотные транзисторы (МП40 МП42), а вместо П213Б транзисторы П214 П217, П201, П4 с любым буквенным индексом. Мощный транзистор V7 желательно установить на радиаторе. Резисторы R1, R3 типа МЛТ на любую мощность рассеяния. Электролитические конденсаторы типа К50 6. Их емкости могут быть больше 500 МкФ, что еще лучше сгладит пульсации выпрямленного тока. Что же касается их номинальных напряжений, то для конденсатора С1 оно должно быть не менее 25 В, а для С2 не менее 15 В. Стабилитрон V5 серии Д813 или подобные ему Д811, Д814Г с напряжением стабилизации 12 В. Для самого выпрямителя кроме диодов серии Д226 можно использовать диоды Д7 с любым буквенным индексом.

Функцию сетевого трансформатора Т1 выполняет выходной трансформатор кадровой развертки ТВК 70, первичная обмотка которого используется как сетевая. При напряжении сети 220 В на его вторичной обмотке получается переменное напряжение около 12 В, а на выходе выпрямителя (на конденсаторе C1) постоянное напряжение 16 17 В. Но сетевой трансформатор может быть самодельным, о чем у нас уже был разговор в этой беседе.

Монтируя детали блока питания, особое внимание удели правильной полярности включения диодов, электролитических конденсаторов и выводов транзисторов.

А закончив монтаж, проверь его по принципиальной схеме нет ли ошибок, ненужных соединений. Только после этого подключай его к сети и проверяй его работоспособность. Включив питание, сразу же измерь вольтметром постоянного тока напряжение на выходе блока. В положении движка переменного резистора R2 в крайнем верхнем (по схеме) положении оно должно соответствовать номинальному напряжению стабилизации стабилитрона (в нашем случае 12 В) и плавно уменьшаться почти до нуля при вращении оси переменного резистора против направления движения часовой стрелки. Если, наоборот, при таком вращении оси резистора напряжение увеличивается, то поменяй местами проводники, идущие к крайним выводам этого регулятора выходного напряжения блока.

Затем в разрыв цепи стабилитрона, отмеченный на рис. 169 крестом, включи миллиамперметр и, подбирая резистор R1, установи в этой цепи ток, равный 10 12 мА. При подключении к выходу блока нагрузки, роль которой может выполнять проволочный резистор сопротивлением 100 120 Ом, ток через стабилитрон должен уменьшаться до 6 8 мА, а напряжение на эквиваленте нагрузки оставаться практически неизменным.

После этого займись градуировкой шкалы переменного резистора R2, по которой в дальнейшем ты будешь устанавливать напряжение, подаваемое к той или иной нагрузке. Делай это так. К выходным зажимам подключи резистор сопротивлением 430 470 Ом, чтобы замкнуть внешнюю цепь блока, и вольтметр постоянного тока. Затем плавно вращай ось переменного резистора и на дуге, начерченной вокруг оси, делай отметки, соответствующие напряжениям, показываемым вольтметром.

На этом налаживание блока питания можно считать законченным.

Какие изменения или дополнения можно внести в этот блок питания?

Может случиться, что у тебя не окажется транзистора П213Б или другого транзистора средней или большой мощности. Тогда на его место поставь транзистор МП42. Но в этом случае наибольший ток, потребляемый нагрузкой от блока питания, не должен превышать 40 50 мА. На первое время это тебя вполне устроит, а в дальнейшем ты его заменишь мощным транзистором.

Ко вторичной Обмотке трансформатора можно подключить коммутаторную лампочку накаливания H1 (на рис. 171, а), рассчитанную на напряжение 12 В, и укрепить ее на верхней лицевой панели. Она, загораясь, будет служить индикатором подключения блока к сети.

Блок можно дополнить вольтметром и по нему, вместо шкалы переменного резистора, устанавливать необходимое выходное напряжение. Схема подключения измерительного прибора к выходу блока показана на рис. 171,6. Для этой цели подойдет любой малогабаритный прибор магнитоэлектрической системы, например, М5 2 на ток 1 5 мА. Примерное сопротивление добавочного резистора Rдоб , ограничивающего ток через вольтметр РШ, рассчитай по формуле, вытекающей из закона Ома: R = U/I, здесь U наибольшее напряжение на выходе блока питания, а I наибольший ток, на который рассчитан измерительный прибор. Так, например, если прибор на ток 5 мА, а напряжение на выходе блока 12 В, резистор Rдоб должен быть сопротивлением около 2400 Ом. Шкалу прибора градуируй по контрольному вольтметру.

Вольтметр, как и переменный резистор, можно разместить на лицевой панели блока.

В блок питания можно ввести также индикатор перегрузки. Дело в том, что транзисторы, работающие в стабилизаторе напряжения, не выдерживают перегрузок. Наиболее опасно короткое замыкание между выходными зажимами или между токонесущими проводниками конструкции, подключенной к блоку. В этом случае через регулирующий транзистор V7 блока может течь недопустимо большой для него ток, из за чего может произойти тепловой пробой транзистора и он выйдет из строя.

Простейший индикатор перегрузки (рис. 172) представляет собой параллельно соединенные резистор R5 и лампу накаливания Н2, которые надо включить в разрыв цепи между фильтрующим конденсатором С1 и параметрическим стабилизатором R1V5. По мере роста тока нагрузки будет увеличиваться падение напряжения на нити накала лампы Н2 и резисторе R5. Сопротивление этого резистора подобрано так, чтобы при токе нагрузки 200 250 мА нить лампы начинала заметно на глаз накаливаться, а при токе более 500 мА ярко светиться, сигнализируя о перегрузке блока питания.

Регистор R5 проволочный, на мощность рассеяния не менее 10 Вт. Используй для него провод высокого сопротивления манганиновый, нихромовый или константановый толщиной 0,18 0,2 мм. Намотай его на корпус резистора МЛТ 0,5 или МЛТ 1,0. Сигнальная лампа Н2 коммутаторная КМ6 60 (6 В х 60 мА) или МН6,3 0,26 (6,3 В х 0,26 А). Размести ее на панели с внутренней стороны неподалеку от переменного резистора R2, а отверстие против лампы прикрой красной прозрачной пленкой. Такое несложное сигнальное устройство поможет тебе при перегрузке блока питания предупредить выход из строя транзисторов стабилизатора напряжения.

Блок питания можно также дополнить миллиамперметром и по его показаниям судить о суммарном токе, потребляемом приемником, усилителем колебаний звуковой частоты или другой подключенной к нему нагрузкой. Подойдет любой малогабаритный измерительный прибор магнитоэлектрической системы на ток 200 300 мА. Его, укрепленного на лицевой панели блока, можно включить, соблюдая полярность, в разрыв проводника, идущего от регулирующего транзистора стабилизатора напряжения к выходному зажиму. Он тоже будет служить индикатором перегрузки блока питания.

Всегда ли сетевой блок питания должен иметь стабилизатор напряжения? Нет! Он необязателен, например, для выпрямителя блока питания усилителя 3Ч повышенной выходной мощности, для некоторых других устройств, не требующих тщательного сглаживания пульсаций выпрямленного напряжения.

В заключение хочу еще раз напомнить:

Пользуясь сетевым блоком питания, не забывай, что в цепи первичной обмотки его трансформатора действует достаточно высокое напряжение.

Будь внимательным!

В этой беседе я рассказал лишь об источниках тока для питания транзисторных конструкций. О способах питания конструкций на электронных лампах я расскажу в четырнадцатой беседе.

Реклама